skip to main content


Search for: All records

Creators/Authors contains: "Naik, Rajesh R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Bimetallic nanoparticles remain a promising avenue to achieve highly reactive catalysts. In this contribution, we demonstrate the use of a photoswitchable peptide for the production of PdAu bimetallic nanoparticles at a variety of Pd : Au ratios. Using this peptide, the biomolecular overlayer structure can be switched between two different conformations ( cis vs. trans ) via light irradiation, thus accessing two different surface structures. The composition and arrangement of the materials was fully characterized, including atomic-level analyses, after which the reactivity of the bimetallic materials was explored using the reduction of 4-nitrophenol as a model system. Using these materials, it was demonstrated that the reactivity was maximized for the particles prepared at a Pd : Au ratio of 1 : 3 and with the peptide in the cis conformation. Such results present routes to a new generation of catalysts that could be remotely activated for on/off reactivity as a function of the ligand overlayer conformation. 
    more » « less
  2. null (Ed.)
  3. Abstract

    Novel methods that enable sensitive, accurate and rapid detection of RNA would not only benefit fundamental biological studies but also serve as diagnostic tools for various pathological conditions, including bacterial and viral infections and cancer. Although highly sensitive, existing methods for RNA detection involve long turn‐around time and extensive capital equipment. Here, an ultrasensitive and amplification‐free RNA quantification method is demonstrated by integrating CRISPR‐Cas13a system with an ultrabright fluorescent nanolabel, plasmonic fluor. This plasmonically enhanced CRISPR‐powered assay exhibits nearly 1000‐fold lower limit‐of‐detection compared to conventional assay relying on enzymatic reporters. Using a xenograft tumor mouse model, it is demonstrated that this novel bioassay can be used for ultrasensitive and quantitative monitoring of cancer biomarker (lncRNA H19). The novel biodetection approach described here provides a rapid, ultrasensitive, and amplification‐free strategy that can be broadly employed for detection of various RNA biomarkers, even in resource‐limited settings.

     
    more » « less
  4. Abstract

    Precise monitoring of specific biomarkers in biological fluids with accurate biodiagnostic sensors is critical for early diagnosis of diseases and subsequent treatment planning. In this work, we demonstrated an innovative biodiagnostic sensor, portable reusable accurate diagnostics with nanostar antennas (PRADA), for multiplexed biomarker detection in small volumes (~50 μl) enabled in a microfluidic platform. Here, PRADA simultaneously detected two biomarkers of myocardial infarction, cardiac troponin I (cTnI), which is well accepted for cardiac disorders, and neuropeptide Y (NPY), which controls cardiac sympathetic drive. In PRADA immunoassay, magnetic beads captured the biomarkers in human serum samples, and gold nanostars (GNSs) “antennas” labeled with peptide biorecognition elements and Raman tags detected the biomarkers via surface‐enhanced Raman spectroscopy (SERS). The peptide‐conjugated GNS‐SERS barcodes were leveraged to achieve high sensitivity, with a limit of detection (LOD) of 0.0055 ng/ml of cTnI, and a LOD of 0.12 ng/ml of NPY comparable with commercially available test kits. The innovation of PRADA was also in the regeneration and reuse of the same sensor chip for ~14 cycles. We validated PRADA by testing cTnI in 11 de‐identified cardiac patient samples of various demographics within a 95% confidence interval and high precision profile. We envision low‐cost PRADA will have tremendous translational impact and be amenable to resource‐limited settings for accurate treatment planning in patients.

     
    more » « less